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Abstract

We study the welfare properties of majority and supermajority rules when

voting is costly and values, costs and electorate sizes are all random. Unlike

previous work, where the electorate size was either fixed or Poisson distrib-

uted and exhibited no limiting dispersion, we study general distributions which

permit substantial dispersion. We identify conditions on these distributions

guaranteeing that a large election under majority rule produces the utilitarian

choice with probability one. Absent these conditions, non-utilitarian outcomes

are possible, as we demonstrate. We also show that majority rule is the only

voting rule with the utilitarian property– strict supermajority rules are not

utilitarian.
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1 Introduction

Pre-election polls leading up to the November 2008 vote on Proposition 8, the Califor-

nia Marriage Protection Act, indicated that it would easily be defeated.1 If passed,

the proposition would make it illegal for same-sex couples to marry. The actual

vote count sharply differed from poll predictions– Proposition 8 passed by a 52-48%

margin. The results surprised most Californians and were shortly followed by mass

protests and lawsuits.2

The intent of any referendum, including Proposition 8, is to reflect directly the will

of the electorate. But of course, it can only reflect the will of those of the electorate

who actually turn out to vote. The election results suggest that the preferences of

those who turned out to vote were different from the preferences of the population at

large, at least to the extent that the pre-election polls accurately reflected the latter.

Precisely, the turnout rates of those in favor of the proposition– that is, against same-

sex marriage– were greater than of those opposed. A simple explanation is that those

in favor felt more strongly about the matter and turned out in greater numbers.3 If

voters on both sides had come to the polls in proportion to their numbers in the

overall populace, there would have been no surprise on election day. When intensity

of preference drives turnout, such surprises can, and do, happen.

This paper studies the outcomes produced by majority rule in a setting where the

intensity of preference affects turnout. Our starting point is the following well-known

conundrum. Suppose that 51% of the populace mildly favors one of two choices. The

remainder passionately favors the alternative. If everyone voted, the choice supported

by the majority would win; however, a utilitarian social planner would side with the

minority since the welfare gains would more than compensate for the modest losses

1The three polls closest to the election had Proposition 8 losing by margins of 47-50% (Survey

USA), 44-49% (Field Poll) and 44-52% (Public Policy Institute of California).
2The proposition was declared unconstitutional by the lower courts and this ruling was upheld

by the US Supreme Court in June 2013.
3The vote on Proposition 8 was concurrent with the 2008 presidential election and so one may

wonder whether turnout was determined by the latter. But since California voted overwhelmingly

for Barack Obama in 2008, this cannot explain the “surprise”positive vote for the proposition.
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of overruling the majority.4 In such situations, majority rule would appear to be at

odds with utilitarianism.

Or would it? Voting is often a choice rather than a requirement. Voters incur

opportunity (or real) costs in coming to the polls and may avoid these by abstaining.

This casts doubt on our earlier conclusion. Given their intensely held views, the

minority may be more motivated than the majority to incur voting costs. Thus,

to some degree, the decision to vote encodes voters’ intensity of preference. But

even here the connection is blunt– the turnout decision is binary while intensities

are not– and, at best, indirect. Both sides are only motivated to turn out to the

extent that they are likely to influence the final decision; that is, the benefits from

voting are mitigated by the probability that a vote cast is pivotal. So even though

the minority feels intensely about their favored alternative, were they suffi ciently

pessimistic about the prospect of being decisive, intensity alone would mean little in

terms of participation.

We show below that when voting is costly, voluntary voting under majority rule

translates societal preferences into outcomes in a consistent way– it always imple-

ments the utilitarian outcome. Precisely, in a large election, the side with the higher

aggregate willingness to pay to alter the result gets its preferred outcome in equi-

librium. Moreover, majority rule is the only election rule with this property. Even

with strategically sophisticated voters, supermajority rules– such as a rule that re-

quires a 2 : 1 vote ratio to overturn the status quo– will not deliver the utilitarian

choice. That such a rule is biased in favor of the status quo is not surprising. But

the magnitude of this bias is surprising. For instance, one might conjecture that a

2 : 1 supermajority rule will give twice the weight to the welfare of those favoring the

status quo as compared to those favoring the alternative. In fact we show that the

2 : 1 rule gives four times the weight to the status quo over the alternative. More

generally, supermajority rules favor the status quo at a weight proportional to the

square of required vote ratio. As a consequence, even small departures from majority

4This, of course, presupposes that interpersonal utility comparisons are possible. We discuss this

issue below.
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rule disproportionately favor the status quo. For instance, the not uncommon 60%

rule gives more than twice the weight to the status quo as the alternative.5

In this paper, we study welfare in what is, arguably, the workhorse model of

voting, the pure private values model. We examine voluntary and costly voting in

two-candidate elections and relate election outcomes to utilitarian choices. Most

models in this class assume that the number of voters is fixed and known or Poisson

distributed. While the first specification seems unrealistic in large elections, the

Poisson formulation has a similar problem, since population dispersion (measured by

the coeffi cient of variation) vanishes in the limit. Thus, once again, in large elections,

voters are unreasonably sure about the size of the electorate. In contrast, we study

a more general non-parametric formulation that nests these two cases, as well as

allowing many other commonly used distributions. Importantly, this class permits

positive population dispersion in the limit.

1. Under weak assumptions on the population distribution, majority rule selects

the utilitarian candidate almost certainly in a large election (Theorem 1).

2. No other voting rule shares this property: Among all supermajority rules, ma-

jority rule is the unique rule having the utilitarian property (Theorem 2). More-

over, such rules disproportionately favor the status quo from a welfare perspec-

tive.

Intuition for our first result is easily seen in the following example: A finite pop-

ulation is to vote over two alternatives, A and B. A fraction λ > 1/2 of voters favor

A and receive payoff vA > 0 when it is selected. The remainder favor B and receive

payoff vB > 0 when it is chosen. Finally, the cost of voting is an independent draw

from a uniform distribution on [0, 1].

For A supporters, the benefits of voting are vA Pr [PivA] , where Pr [PivA] is the

probability that an additional A vote is decisive, which depends on turnout. In

5A 60% rule requires the alternative to obtain a vote ratio of 3/2 and so the implied welfare

weight, its square, is 9/4.
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equilibrium, all A supporters with costs below a threshold cA will vote. The threshold

equates the costs and benefits of voting:

cA = vA Pr [PivA]

Similarly, the cost threshold cB for B supporters is

cB = vB Pr [PivB]

Because voting costs are uniformly distributed, cA also equals the turnout rate pA

of A supporters; similarly, cB equals pB. Using this and multiplying the fractions of

voters favoring each alternative, yields expressions in terms of expected vote shares,

λpA and (1− λ) pB for A and B, respectively. Thus, in equilibrium

λpA
(1− λ) pB

=
λvA

(1− λ) vB
× Pr [PivA]
Pr [PivB]

The right-hand side is the product of two terms, the “welfare ratio”and the “pivot

ratio.”We claim that the vote share favors B if and only if B is utilitarian. Suppose

that B is utilitarian, i.e., λvA < (1− λ) vB, but that A enjoys a higher vote share.

Since the welfare ratio is less than one, it must be that the pivot ratio exceeds one,

i.e., an A vote is more likely to be decisive than a B vote. But this is never the case

when A is ahead since a vote for the trailing candidate pushes the vote total in the

direction of ties or near ties while a vote for the leading candidate pushes the total

away. Thus, if the vote share favored A, then both the welfare and pivot ratios would

favor B, a contradiction. Therefore, the vote share must favor B. The converse also

holds.

The simplicity of the above argument is deceptive and relies essentially on het-

erogeneous voting costs (with a lower support at 0). If, instead, all voters faced the

same cost, c > 0, to vote, along the lines of Palfrey and Rosenthal (1983) and Camp-

bell (1999), then participation rates (in this case, the probability of voting) would

again be determined by equating the costs and benefits (in an interior equilibrium),

replacing c for cA and cB in the expression above. When A receives a greater vote

share than B, the “underdog”principle again implies that pivotality considerations
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favor B. Since voters face the same costs, so too must they receive the same expected

benefits. Therefore, A enjoys a higher vote share if and only if vA > vB. But this pays

no attention to the fraction of voters of each type, so the outcome is not utilitarian.

Formally, with a fixed cost of voting, votes shares favor B if and only if the utility

of a typical B voter, vB, exceeds that of an A voter– irrespective of the population

fractions of each type of voter.

The argument that the vote shares must favor the utilitarian candidate holds

independent of the distribution of the voter population. But vote share differences

alone do not guarantee that the utilitarian candidate will win almost surely in large

elections. If the limiting population dispersion swamps vote share differences, the

“wrong”candidate may be elected with positive probability (see Example 3 below).

Lacking any limiting dispersion, the fixed and Poisson voter models obscure this

possibility. Theorem 1 identifies some (weak) conditions where vote share differences

dominate, and the utilitarian candidate is elected almost surely, even in the face of

positive population dispersion.

In addition to our main results, we make two technical contributions to the analysis

of voting that enable us to do away with parametric assumptions as to the size

of the electorate. The first tool is to formulate pivot probabilities using complex

roots of unity, which permits the study of voting rules in a way that avoids the

complicated, and distribution specific, combinatorics inherent in their calculation (see

Appendix A). The second tool is a “new”approximation result due to Roos (1999),

discussed in Appendix D, that allows us to closely approximate pivot probabilities of

any population distribution as a mixture of Poisson distributions.

Related Literature We also studied the welfare properties of voluntary voting

in Krishna and Morgan (2011), but only under majority rule and only in a Poisson

context. Our Result 1 identifies a weak condition on population distributions that

guarantees the utilitarianism result. This condition allows for realistic levels of lim-

iting population dispersion and goes well beyond, but includes, the Poisson model.

We also show by example that the condition cannot be dispensed with– some patho-
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logical kinds of population uncertainty can upset the utilitarian property of majority

rule. Result 2 shows that the utilitarian property is unique to majority rule– all

supermajority rules produce severely biased, non-utilitarian outcomes.

The connection between majority voting and utilitarianism originates with Led-

yard (1984). In a fixed voter model, Ledyard studies ideological positioning of can-

didates when faced with voters with Hotelling-type preferences and privately known

voting costs. If voting were costless, both candidates would co-locate at the preferred

point of the median voter. With costly voting, Ledyard shows that candidates still

co-locate, but at the welfare maximizing (utilitarian) ideology. Thus, there is no

incentive to participate, and, in equilibrium, the first-best outcome obtains without

any actual voting! Myerson (2000) reproduces this result when the number of vot-

ers is Poisson distributed. Using the convenient asymptotic formulae for the Poisson

model, he links majority rule and utilitarianism as a stepping stone to obtaining the

co-location/nobody votes outcome. Our model is a more general version of Ledyard

allowing for general population distributions, supermajority voting rules, and doing

away with purely vote maximizing objectives on the part of candidates.

When candidates have concerns other than merely winning the election, they will

not co-locate, which is our starting point. We study a situation where candidates’ide-

ological positions are given and different. Here, turnout is positive as the supporters

of both sides vie to obtain their preferred choice; nonetheless, the chosen candidate

maximizes societal welfare– the utilitarian choice enjoys higher vote share and, in

large elections, wins with certainty. Unlike Ledyard, we also examine supermajority

rules and show that the utilitarian property is unique to majority rule. In a closely

related model with fixed voting costs, Campbell (1999) finds that majority rule is

not utilitarian.6 As the two examples in our introduction illustrate, the utilitarian

property of majority rule relies essentially on random voting costs.

Börgers (2004) compares compulsory and voluntary voting in a completely sym-

metric special case of our model. His main concern is with the cost of participation,

6Campbell’s reformulation of situations where voters have heterogeneous costs and values into a

unidimensional ratio of the two is only valid when either costs or values are degenerate.
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where he shows that voluntary voting, by economizing on voting costs, Pareto dom-

inates compulsory voting. The model’s symmetry precludes questions like those we

pose. Moreover, Krasa and Polborn (2009) show that Börgers’result may not hold

when the symmetry is broken.

Palfrey and Rosenthal (1985) characterize equilibrium properties of large elections

with random voting costs that, with strictly positive probability, are zero or negative.

They find that, in large elections, only voters with negative (or zero) costs vote.

Taylor and Yildirim (2010) study a similar model but where voting costs are bounded

above zero. In this setting, they establish the so-called “underdog principle”– a vote

for the minority candidate is more likely to be pivotal than a vote for the majority

candidate. In both papers preference intensities are identical for both sides and so

welfare considerations of election outcomes are not investigated.

In a Poisson setting, Feddersen and Pesendorfer (1999) examine majority rule

elections in a hybrid model in which voter preferences have both private and common

components with differing preference intensities. Even though voting is costless, the

“swing voter’s curse”leads some voters to abstain. They show that, in large elections,

information aggregates in the sense of full information equivalence– the outcome cor-

responds to what would be obtained were all voters informed about the underlying

state. Full information equivalence is entirely separate from utilitarianism. For in-

stance, the outcome under compulsory voting in our setting, which is not utilitarian,

also satisfies full information equivalence.

Limiting population dispersion is a form of aggregate uncertainty, a topic growing

in importance. In a private values model with identical preference intensities, Myatt

(2012) introduces aggregate uncertainty about the fraction of voters supporting each

candidate. He studies the effect of aggregate uncertainty on percentage turnout.

Welfare is not considered owing to the absence of diverse voter preferences.

In a fixed voter model, Schmitz and Tröger (2012) study the welfare properties

of voting rules in symmetric settings, i.e. situations where both voters and candi-

dates are ex ante identical. They show that, when voter values are independently

distributed, majority rule is second-best– it maximizes utilitarian welfare among all
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incentive compatible, anonymous and neutral voting rules.7 By contrast, our setting

permits asymmetries across candidates and uncertainty as to the number of poten-

tial voters. We show that, in large elections under costly voting, majority rule is

first-best– it maximizes utilititarian welfare.

The remainder of the paper proceeds as follows. We sketch the model in Section

2. Section 3 establishes that vote shares favor the utilitarian choice when voting

costs are uniform. Sections 4 and 5 study large elections. In Section 4, we generalize

the vote share result to arbitrary voting costs. Section 5 identifies mild conditions

on the distribution of eligible voters such that majority rule is utilitarian. Section 6

studies supermajority rules and shows that they do not satisfy the utilitarian property.

Indeed, supermajority rules are “over-biased”towards the status quo. Finally, Section

7 concludes.

2 The Model

We study a general version of the familiar “private values” voting model in elec-

toral settings where ideology is the main driver of voter decisions and where there

is uncertainty about the size and preferences of the voting populace at large. As

discussed above, a key distinction between our model and the extant literature is a

non-parametric specification of the process determinning the number of eligible voters

and permitting limiting dispersion.

Two candidates, named A and B, who differ only in ideology, compete in an

majority election with ties resolved by the toss of a fair coin.8 Voters differ both in

the direction and intensity of their preferences. With probability λ ∈ (0, 1) a voter
supports A and with probability 1− λ, supports B. Next, each A supporter draws a
value v from the distribution GA over [0, 1] which is her value of electing A over B.

Similarly, each B supporter draws a value v from the distribution GB over [0, 1] which

is her value of electing B over A. A voter’s type is the combination of the direction

7Also in a symmetric setting, Kim (2013) shows that, when there are three or more candidates,

no ordinal rule is second-best.
8Supermajority rules are considered in Section 6.
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and intensity of preferences. Types are distributed independently across voters and

independently of the number of eligible voters. A citizen knows her own type and

that the types of the others are distributed according to λ, GA and GB.

To facilitate welfare analysis, which inherently relies on making interpersonal com-

parisons, we measure voters’values v on a common money-metric scale, say in dollars.

Thus, for an A supporter, her value v represents the monetary amount she would be

willing to pay to switch the outcome of the election from B to A. Later, we will

introduce voting costs, which we also measure in dollars. So effectively, voters have

quasi-linear preferences.

The exact number of eligible voters may also vary. The size of the electorate is

a random variable N ∈ {0, 1, ...} distributed according to the objective probability
distribution function π∗, with finite mean m. Thus, the probability that there are

exactly n eligible voters (or citizens) is π∗ (n). From an individual voter’s perspective,

the probability that there are exactly n− 1 other eligible voters is given by

π (n− 1) = π∗ (n)× n

m
(1)

The total number of eligible voters from the perspective of a participant is thus the

realized number of other voters plus the voter herself.9 An individual voter thus

believes that this population is distributed according to the subjective probability

distribution π∗∗ defined on {1, 2, ...} by

π∗∗ (n) = π (n− 1) = π∗ (n)× n

m
(2)

As long as there is some population uncertainty (π∗ is non-degenerate), the two

probability distributions differ– the subjective distribution first-order stochastically

9To derive (1), suppose that there is a large pool of M identical potential voters from which

n eligible voters are drawn according to π∗. All potential voters are equally likely to be eligible.

Conditional on the event that a particular voter has been chosen to be eligible, the probability that

there are n− 1 other eligible voters is

π∗ (n) nM∑M
k=1 π

∗ (k) k
M

=
π∗ (n)n∑M
k=1 π

∗ (k) k

and as M →∞, the denominator on the right-hand side converges to m.
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dominates the objective distribution. Thus, an individual voter perceives herself as

voting in a stochastically larger election than is warranted from the perspective of

an outside observer.10 As we show in Section 4, this difference in perception matters

since it affects turnout rates and, consequently, election results. Stochastically large

majority elections perform well when subjective and objective beliefs are in rough

concordance with one another and can perform poorly when they are not.

Utilitarianism

Before analyzing elections, we establish a benchmark where a utilitarian social

planner selects the candidate. Since voters’valuations are all measured on the same

(monetary) scale, simply summing values on each side produces an aggregate “will-

ingness to pay”to switch the outcome from B to A and vice-versa. Reflecting this

idea, suppose that the planner’s choice is made ex ante, before types are realized, and

gives equal weight to each potential voter. The expected welfare of A supporters from

electing A over B is vA =
∫ 1
0
vdGA (v) while the expected welfare of B supporters

from electing B over A is vB =
∫ 1
0
vdGB (v) . Since, with probability λ, a voter is an A

supporter (otherwise she is a B supporter), ex ante utilitarian welfare is higher from

electing A rather than B if and only if λvA > (1− λ) vB.When this inequality holds,
we say that A is the utilitarian choice (and if it is reversed then B will be referred to

as such). We will say that a voting rule is utilitarian if the candidate elected is the

same as the utilitarian choice.

Compulsory Voting

We now study elections under compulsory voting where the penalties for not

voting are severe enough that all eligible voters turn out at the polls. Once there,

a voter may still abstain by submitting a blank or spoilt ballot. In equilibrium, all

voters turn out and vote for their preferred candidate, and, in large elections, the

outcome only depends on λ, the fraction of A voters. Candidate A wins if and only if

λ > 1/2, but this is obviously not utilitarian since the outcome is independent of the

10Myerson (1998b) defines “environmental equivalence”as π (n) = π∗ (n), a property of the Pois-

son distribution. But this says that a voter’s subjective belief that there are n other voters is the

same as the objective probability that there are a total of n voters.
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intensity of preferences. Thus, A wins in circumstances where a majority of voters

tepidly support it but a minority intensely prefer B, so that λvA < (1− λ) vB. To
summarize: Under compulsory voting, majority rule is not utilitarian.

Voluntary and Costly Voting

We now turn to voluntary voting. A citizen’s voting cost is determined by an

independent realization from a continuous probability distribution F, which does not

vary by the type or number of voters, satisfying F (0) = 0 and with a strictly positive

density over the support [0, 1].

Prior to the voting decision, each citizen has two pieces of private information–

her type and her cost of voting. Each voter compares the costs and benefits of voting

in deciding whether to turn out. The benefits from voting depend on the chances that

a given vote will be pivotal, i.e., swing the election outcome in favor of the voter’s

preferred candidate either from a loss to a tie or from a tie to a win.

Pivotal Events

An event is a pair of vote totals (j, k) such that there are j votes for A and k votes

for B. An event is pivotal for A if a single additional A vote will affect the outcome

of the election, i.e., where there is a tie or when A has one less vote than B. We

denote the set of such events by PivA. It consists of T = {(k, k) : k ≥ 0} , the set of
ties, and T−1 = {(k − 1, k) : k ≥ 1} , the set of events in which A is one vote short.

Similarly, PivB is defined to be the set of events which are pivotal for B. It consists

of the set T of ties together with T+1 = {(k, k − 1) : k ≥ 1} , the set of events where
A is ahead by one vote.

To determine the chances of pivotal events, suppose that voting behavior is such

that, ex ante, each voter casts a vote for A with probability qA and a vote for B with

probability qB. Then q0 = 1 − qA − qB is the probability that a voter abstains. Fix
a voter, say 1. Consider an event where the number of other voters is exactly n and

among these, there are k votes in favor of A and l votes in favor of B. The remaining

n − k − l voters abstain. If voters make decisions independently, the probability of
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this event is

Pr [(k, l) | n] =
(
n

k, l

)
(qA)

k (qB)
l (q0)

n−k−l

where
(
n
k,l

)
=
(
n
k+l

)(
k+l
k

)
denotes the trinomial coeffi cient.11 For a realized number of

eligible voters, n, the chance of a tie is simply the probability of events of the form

(k, k) . Formally,

Pr [T | n] =
n∑
k=0

(
n

k, k

)
(qA)

k (qB)
k (q0)

n−2k (3)

Since an individual voter is unaware of the realized number of potential voters, the

probability of a tie from that voter’s perspective is

Pr [T ] =
∞∑
n=0

π (n) Pr [T | n]

where the formula reflects a voter’s uncertainty about the size of the electorate.

Similarly, for fixed n, the probability that A falls one vote short is

Pr [T−1 | n] =
n∑
k=1

(
n

k − 1, k

)
(qA)

k−1 (qB)
k (q0)

n−2k+1 (4)

and, from the perspective of a single voter, the overall probability of this event is

Pr [T−1] =
∞∑
n=0

π (n) Pr [T−1 | n]

The probabilities Pr [T+1 | n] and Pr [T+1] are analogously defined.
It then follows that Pr [PivA] = 1

2
Pr [T ]+ 1

2
Pr [T−1] , where the coeffi cient 12 reflects

the fact that, in the first case, the additional vote for A breaks a tie while, in the

second, it leads to a tie. Likewise, Pr [PivB] = 1
2
Pr [T ] + 1

2
Pr [T+1] .

Our next proposition shows that when others are more likely to choose B than

A, a vote cast for the “underdog”is more likely to be pivotal, and vice-versa. Such

underdog results appear in various forms in the literature. For instance, Ledyard

(1984) showed it for the fixed population private values model. The result below is a

simple generalization to our setting.

Proposition 1 Under majority rule, Pr [PivA] > Pr [PivB] if and only if qA < qB.

11We follow the convention that if m < k + l, then
(
m
k+l

)
= 0 and so

(
m
k,l

)
= 0, as well.
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Proof. Note that

Pr [PivA]− Pr [PivB] = 1
2
(Pr [T−1]− Pr [T+1])

and since

qA Pr [T−1] =

∞∑
n=0

π (n)
n∑
k=0

(
n

k, k + 1

)
(qA)

k+1 (qB)
k+1 (q0)

n−2k−1

= qB Pr [T+1]

Pr [T−1] > Pr [T+1] if and only if qA < qB.

3 Equilibrium

We now study equilibrium voting and participation decisions. Voting behavior is very

simple– A supporters vote for A and B supporters for B. For both, voting for their

preferred candidate is a weakly dominant strategy. Thus, it only remains to consider

the participation behavior of voters, where we study type-symmetric equilibria. In

these equilibria, all voters of the same type and same realized cost follow the same

strategy. Myerson (1998) showed that in voting games with population uncertainty,

all equilibria are type-symmetric.12 Thus, when we refer to equilibrium, we mean

type-symmetric equilibrium.

An equilibrium consists of two functions cA (v) and cB (v) such that (i) an A

supporter (resp. B supporter) with cost c votes if and only if c < cA (resp. c < cB);

(ii) the participation rates pA (v) = F (cA (v)) and pB (v) = F (cB (v)) are such that

the resulting pivotal probabilities make an A supporter (resp. B supporter) with

value v and costs cA (v) (resp. cB (v)) indifferent between voting and abstaining. An

equilibrium is thus defined by the equations:

cA (v) = v Pr [PivA]

cB (v) = v Pr [PivB]

12For the degenerate case where the number of eligible voters is fixed and commonly known, type

asymmetric equilibria may arise; however, such equilibria are not robust to the introduction of even

a small degree of uncertainty about the number of eligible voters.
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Figure 1: Equilibrium in Example 1

which must hold for all v ∈ [0, 1] . Equilibrium may be equivalently expressed in terms
of participation rates

pA (v) = F (v Pr [PivA])

pB (v) = F (v Pr [PivB])

To obtain the ex ante probability of an A vote, qA = λpA, integrate the function

pA (v) over [0, 1] to obtain pA, the ex ante probability that a given A-voter will vote

for A, and multiply this by the fraction of A supporters λ. An analogous procedure

produces the ex ante probability of an A vote, qB = (1− λ) pB. In terms of voting
propensities, the equilibrium conditions are

qA = λ

∫ 1

0

F (v Pr [PivA]) dGA (v) (5)

qB = (1− λ)
∫ 1

0

F (v Pr [PivB]) dGB (v) (6)

It is now straightforward to establish:
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Proposition 2 With costly voting, there exists an equilibrium. In every equilibrium,

all types of voters participate with a probability strictly between zero and one.

Proof. Since both Pr [PivA] and Pr [PivB] are continuous functions of qA and qB,

Brouwer’s Theorem ensures that there is a solution (qA, qB) ∈ [0, 1]2 to (5) and (6)
with associated participation rates, pA and pB. Neither pA nor pB can equal 1. If

pA = 1, then for all v, pA (v) = 1 and hence for all v, cA (v) = 1 as well. But

cA (v) ≤ v < 1 almost everywhere, so this is impossible. Second, neither pA nor pB

can equal 0. If pA = 0, then, for an A supporter, there is a strictly positive probability,

of at least λn with n other voters, that no one else shows up. Thus, Pr [PivA] > 0,

which implies that, for all v, cA (v) > 0 and, in turn, pA (v) > 0 as well.

Example 1 Suppose that the population is distributed according to a Poisson dis-

tribution with mean m = 100. Suppose also that λ = 2
3
, vA =

1
3
, vB = 1 and that

voting costs are distributed according to F (c) = 3c over
[
0, 1

3

]
. Figure 1 depicts the

equilibrium conditions (5) and (6).

Notice that in the example, for a given pB there may be multiple values of pA

that solve (5). This is because for fixed pB, Pr[PivA] is a non-monotonic function of

pA while F 1(pA) is monotone. Despite the fact that both curves “bend backwards,”

there is a unique equilibrium.

Uniform Costs

We now study relative participation rates temporarily assuming that voting costs

are uniformly distributed. The advantage of this specification is that equilibrium cost

thresholds and participation rates are identical. In this case, F (c) = c, and so the

equilibrium conditions (5) and (6) can be rewritten as

qA = λPr [PivA]

∫ 1

0

vdGA (v) = λvA Pr [PivA]

qB = (1− λ) Pr [PivB]
∫ 1

0

vdGB (v) = (1− λ) vB Pr [PivB]

where vA is the expected welfare of an A supporter from electing A rather than B

and vB is the expected welfare of a B supporter from electing B rather than A.
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Rewriting these expressions as a ratio, we have

mqA
mqB

=
λvA

(1− λ) vB
× Pr [PivA]
Pr [PivB]

(7)

The left-hand side of (7) is simply the ratio of the expected number of A versus B

votes. The first term on the right-hand side is the ratio of the welfare from choosing

A versus B and is greater (resp. less) than 1 when A (resp. B) is the utilitarian

choice. The second term on the right-hand side is the ratio of pivot probabilities,

which is linked to the left-hand side via Proposition 1.

This linkage, we claim, implies that the utilitarian choice enjoys a higher expected

vote share than the non-utilitarian choice. To see this, suppose thatA is the utilitarian

choice, but qA < qB. Proposition 1 implies that a vote for A is more likely to be pivotal

than a vote for B and hence Pr [PivA] /Pr [PivB] > 1. In that case, both expressions

on the right-hand side of (7) exceed 1 while the left-hand side is fractional, a clear

contradiction. A similar argument establishes the result when candidate B is the

utilitarian choice. Thus, we have:

Proposition 3 Suppose voting costs are uniformly distributed. In any equilibrium,

the expected number of votes for A exceeds the expected number of votes for B if and

only if A is the utilitarian choice. Precisely, qA > qB if and only if λvA > (1− λ) vB.

The following example illustrates Proposition 3.

Example 2 Suppose that the population follows a Poisson distribution with mean

m = 1000 and that voting costs are uniform. Figure 2 depicts the equilibrium ratio

of the expected number of votes for A versus B, qA/qB, as a function of the welfare

ratio, λvA/ (1− λ) vB.

As Example 2 illustrates, the utilitarian candidate always receives the higher vote

share, even for finite sized electorated. Moreover, elections are not necessarily close–

when the welfare ratio strongly favors one side or the other, equilibrium voting pro-

duces a landslide.

Proposition 3 applies to all equilibria and to all electorate sizes. While it shows

that the utilitarian choice is more likely to be elected than the alternative, it does
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Figure 2: Ratios of Votes and Pivot Probabilities

not say that this happens for sure, i.e., with probability one, nor does it say what

happens when voting costs are not uniform. We turn to these issues in the next two

sections.

4 Large Elections

We now examine turnout in large elections, and show that the expected numbers of

voters on both sides of the election become unbounded and are of the same magnitude.

Our main result shows that the vote share advantage of the utilitarian candidate,

highlighted in Proposition 3 when voting costs are uniform, extends to all voting cost

distributions. Before proceeding, we define what we mean by large elections.

Definition 1 The sequence of distributions π∗m is asymptotically large if for all M,

lim
m→∞

∞∑
n=M

π∗m (n) = 1 (8)

Condition (8) requires that, for large m, the distribution π∗m places almost all

the weight on large populations. In what follows, we consider a sequence of such
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distributions, and when we speak of a “large election,”we mean that m is large. The

fixed population specification satisfies (8), of course, as does the Poisson population

specification: π∗m (n) = e−mmn/n!. But other interesting specifications satisfy the

condition as well. These include the sequence of negative binomial distributions with

mean m or the sequence of hypergeometric distributions, again with mean m.

It is easily verified that if the sequence of objective distributions, π∗m, is asymp-

totically large, then so is the sequence of subjective distributions, π∗∗m . The same is

true of the sequence πm of subjective distributions of “other”eligible voters.

Consider a sequence of equilibria, one for each m. Let pA (m) and pB (m) be

the sequence of equilibrium participation rates of A and B supporters, respectively.

Proposition 4 below says that in large elections, both participation rates tend to zero,

but at a rate slower than 1/m. As a result, the expected number of voters of each

type is unbounded. Establishing that total turnout (the expected number of voters)

cannot be finite is straightforward. Were this the case, voters would have strictly

positive benefits from voting and hence participate at strictly positive rates, leading

to unbounded turnout. Moreover, turnouts for the two candidates cannot become

too unbalanced since the side with the lower turnout would enjoy disproportionately

higher benefits from voting, a contradiction. Thus, the expected number of A and B

voters must be infinite and of the same magnitude.

Proposition 4 In any sequence of equilibria, the participation rates pA (m) and

pB (m) tend to zero, and at the same rate, while the expected number of votersmpA (m)

and mpB (m) tend to infinity.

Proof. See Lemmas A.8 and A.9.

Information about limiting participation rates and turnouts permits us to extend

Proposition 3 to arbitrary cost distributions. Since cost thresholds go to zero in the

limit only local properties of the cost distribution in this neighborhood matter. The

key property, approximate linearity of the cdf, is shared by all cost distributions with

positive densities, so voting behavior mirrors the uniform case. Formally,
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Proposition 5 Suppose voting costs are distributed according to a continuous distri-

bution F satisfying F (0) = 0 and F ′ (0) > 0. In any equilibrium of a large election,

the expected number of votes for A exceeds the expected number of votes for B if and

only if A is the utilitarian choice. Precisely, qA > qB if and only if λvA > (1− λ) vB.

Proof. For any cost distribution F satisfying F ′ (0) > 0, let qA (m) = λpA (m) and

qB (m) = (1− λ) pB (m) be a sequence of equilibrium voting propensities. Proposition
4 implies that pA and pB go to zero as m increases. The pivotal probabilities go to

zero as well, which implies that for all v, the cost thresholds cA (v) and cB (v) also go

to zero. Thus, for large m, the equilibrium conditions (5) and (6) imply13

qA ≈ λ

∫ 1

0

F ′ (0) v Pr [PivA] dGA (v) = F ′ (0)λvA Pr [PivA]

qB ≈ (1− λ)
∫ 1

0

F ′ (0) v Pr [PivB] dGB (v) = F ′ (0) (1− λ) vB Pr [PivB]

In ratio form, we have
qA
qB
≈ λvA
(1− λ) vB

× Pr [PivA]
Pr [PivB]

which is asymptotically identical to the case of uniform costs and we know from

Proposition 3 that λvA > (1− λ) vB implies qA > qB. Thus, in large elections we

have that λvA > (1− λ) vB implies qA > qB.

5 Welfare

Proposition 5 shows that in large elections, the expected vote totals always favor

the utilitarian choice, but this alone does not guarantee that the utilitarian candi-

date always wins in a large elections (i.e., with probability approaching one). Since

the realized vote total is random, dispersion in the size of the electorate may cre-

ate circumstances where the wrong candidate wins with strictly positive probability.

Precisely, we wish to explore the following:

13We write xn ≈ yn to denote that limn→∞ (xn/yn) = 1.
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Conjecture 1 In large elections with costly voting, majority rule produces utilitarian

outcomes with probability one.

The electorate size models used in the extant literature prove the conjecture by

relying on the law of large numbers: In the fixed voter model, the conjecture holds

since the actual vote total is arbitrarily close to the expected vote total. Myerson

(2000) argues that the same is true in the Poisson model since population dispersion

vanishes in the limit, so all voting outcomes approach the mean outcome. This

seems to suggest that the absence of limiting population dispersion is important, and

perhaps necessary, for the conjecture to hold.

We will show, however, that majority rule is utilitarian even with substantial pop-

ulation dispersion. The key is that turnout endogenously accounts for the distribution

of electorate sizes. To see this starkly, suppose that we examine welfare from a single

voter’s perspective, using the subjective probability distribution of electorate sizes.

Then we have:

Proposition 6 In large elections, the subjective probability that the utilitarian can-

didate is elected approaches one.

Proposition 6 shows that, from an individual voter’s perspective, the conjecture

holds generally. Roughly the reason is the following. Suppose A is the utilitarian

choice. Then the probability that B wins the election is of the same order of mag-

nitude as the probability that a vote for B is pivotal. The properties of equilibrium

guarantee that this pivot probability goes to zero and thus so the does the probability

of electing the wrong candidate.

But does the objective probability of the utilitarian choice– that is, from an out-

side observer’s perspective– also approach one? Formally, suppose λpA > (1− λ) pB.
Then does the fact that

∞∑
n=0

π∗∗m (n) Pr [A wins | n]→ 1

as m→∞ imply that
∞∑
n=0

π∗m (n) Pr [A wins | n]→ 1
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as well? The following example sharply illustrates that the answer is no.

Example 3 Suppose that vA = vB = 1 for all voters and costs are uniform. Let

λ = 2/3, so A is the utilitarian choice. The electorate may be “small,”n =
√
m, or

“big,” n = 2m, with probability distribution such that the mean is m. The objective

probability of a big electorate becomes one-half as m gets large, but the subjective

probability of a big electorate goes to one. Turnout adjusts to produce the utilitarian

outcome when the electorate is big, but not when it is small, where the limiting turnout

is zero, producing a tied election.

The example illustrates the possibility that π∗m and π
∗∗
m might diverge in the limit,

thereby wrecking the utilitarian property of majority voting. Thus, the "subjective"

result of Proposition 6 does not imply its "objective" counterpart– as stated, the

conjecture above is false in general.

For Proposition 6 to extend to objective probabilities, these two probability dis-

tributions must be suffi ciently close. Uniform convergence would seem the natural

strengthening, but even this turns out to be insuffi cient. To see why, let us return

to Example 3, but with an electorate characterized by a family of logarithmic distri-

butions.14 Here, the subjective and objective distributions converge uniformly, but

“slowly.”Under the objective distribution, π∗m, the chance that the electorate is
√
m

or less is approximately 1
2
when m is large. The slow convergence implies that this

same chance is zero under the subjective distribution. As in Example 3, the resulting

participation is so low that the election ends in a tie (almost surely in the limit) when

the electorate size is small (i.e.,
√
m or less).

The example demonstrates that convergence of π∗m and π
∗∗
m alone is not enough,

even when this convergence is uniform. Rather, the speed of convergence proves a

critical consideration. A suffi cient condition is:

Condition 1 The sequence of population distributions π∗m satisfies the concordance

14Specifically, π∗m (n) =
(
1− 1

φ(m)

)n
÷ n lnφ (m) where t = φ (m) solves m = (t− 1) / ln t.
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condition15:

‖π∗m − π∗∗m‖∞ = O (1/m)

This condition requires the objective and subjective probability distributions to

approach each other at a rate faster than 1/m. As a practical matter, it is not a very

restrictive condition. The two common population distributions used in voting theory,

the fixed and Poisson population models, satisfy it. With a fixed population π∗m = π∗∗m

for all m, and, with a Poisson population, the subjective and objective distributions

approach each other at rate 1/m2. Other major families of discrete distributions,

including the negative binomial family16 and the hypergeometric family,17 also satisfy

the condition. Moreover, these distributions exhibit considerable limiting population

dispersion. Many ad hoc distributions– for instance, a uniform distribution on the

integers between m/2 and 3m/2– satisfy the condition as well. At last, we can

formalize the conjecture as:

Theorem 1 Suppose that the concordance condition holds. In large elections with

costly voting, majority rule produces utilitarian outcomes with probability one.

While the theorem places some restrictions on population distributions, it makes

no other demands. Even if directional preferences lop-sidedly favor the non-utilitarian

choice, the logic of equilibrium turnout produces, in a large election, the correct

result. Given the ordinal nature of majority rule, this is quite remarkable. The key

is voluntary participation– voters vote with their “feet”as well as with their ballots,

thereby registering, not just the direction, but the intensity of their preferences as

well– that produces the utilitarian outcome.

To summarize, utilitarianism under majority rule requires the following key in-

gredients: Elections must be large. The lower support of the voting cost distribution

15‖·‖∞ denotes the sup norm and so the “big O”condition says that there exists a K > 0 such

that for all m and n, |π∗m (n)− π∗∗m (n)| ≤ K/m.
16Specifically, for any r ≥ 1, π∗m (n) =

Γ(n+r)
Γ(n+1)Γ(r)

(
r

m+r

)r (
m
m+r

)n
. This family has a limiting

coeffi cient of variation of 1/
√
r.

17For example, if π∗m (n) =
(

2m
n

)(
2m

2m−n
)
÷
(

4m
2m

)
.
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must be zero. For cost distributions bounded (strictly) above zero, analysis of large

elections is analogous to having fixed voting costs, which offer insuffi cient flexibility

in the “prices” of votes to produce the utilitarian outcome. When a positive mass

of voters have negative voting costs, then, since these individuals will always come

to the polls, the analysis is analogous to compulsory voting with its attendant prob-

lems. While voting costs may differ by candidate preference, the density of costs for

A and B voters must be identical in the neighborhood of zero. If not, then majority

rule would maximize a weighted utilitarian welfare function, where these densities

determine these weights. Finally, the distribution of electorate sizes must satisfy

concordance.

6 Supermajority Rules

While majority rule is the most common voting rule, many situations use super-

majority rules. California and Arizona require legislative supermajorities for any tax

increase.18. Florida and Illinois require a supermajority to pass constitutional amend-

ments. We have shown that majority rule is utilitarian in large elections, but since

turnout adjusts based on the voting rule itself, perhaps supermajority rules are util-

itarian as well. Such a “rule irrelevance”result occurs in Condorcet models, where

Feddersen and Pesendorfer (1998) showed that all supermajority voting rules (save

for unanimity) aggregate information in large elections. Rule irrelevance does not

hold in our model– only simple majority rule is utilitarian

To study supermajority rules, let Candidate B be the default choice while A needs

a fraction φ ≥ 1
2
of the votes cast in order to be elected. We will assume that φ is a

rational number and so will write φ = a/ (a+ b) , where a and b are positive integers

which are relatively prime (have no common factors) and such that a ≥ b. In the

event of a tie– a situation in which A obtains exactly n proportion of the votes– A

18The required legislative supermajorities differ across states. Arizona and California, among

others, require a 2/3 majority. Arkansas and Oklahoma require a 3/4 majority for certain types of

tax increases while Florida and Oregon require a 3/5 majority.
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is chosen with probability t and B with probability 1− t.19

In this section, the population of voters is Poisson with mean m. We show that,

unless the voting rule is majoritarian (a = b = 1), the outcome of a large election

will not coincide with the utilitarian choice. Since the result is negative, it suffi ces

to establish the non-utilitarian property of strict supermajority rules for the Poisson

case only. The key to our analysis is Proposition 7 which extends the underdog

result (Proposition 1) to supermajority rules when the electorate is Poisson. This

proposition shows that in large elections, if A is on the losing side, i.e., the ratio

of voting propensities, qA/qB falls short of the required a/b, then the pivot ratio

Pr [PivA] /Pr [PivB] exceeds b/a. Formally,

Proposition 7 If for all m large, qA(m)
qB(m)

≥ a
b
, then lim sup P[PivA]P[PivB ] ≤

b
a
. Similarly, if

for all m large, qA(m)
qB(m)

≤ a
b
, then lim inf P[PivA]P[PivB ] ≥

b
a
.

Proof. See Appendix C.

The workings of Proposition 7 are easily seen under a 2/3 supermajority rule. If

the vote ratio is less than the required 2 : 1 for A, then a vote for B is twice as likely

to be pivotal as a vote for A. This multiple derives from an asymmetry in pivotal

events under strict supermajority rules. Votes for A and B are both pivotal when the

election is tied or where one additional vote will lead to a tie. But a vote for B can

also “flip”the election and swing the outcome from a sure loss to a sure win. This

occurs when the vote count is of the form (2k − 1, k − 1). The chance of such events
is approximately equal to the chance of a tie (or near tie); however, the flip events

receive twice the weight since they do not lead to or break a tie. As a consequence,

Pr [PivB] is approximately twice as large as Pr [PivA] .

The asymmetry highlighted in Proposition 7 creates a wedge between election

outcomes and utilitarianism, as the main result of this section shows.

Theorem 2 Among all supermajority rules only majority rule is utilitarian. Specif-

ically, in a a
a+b

supermajority election with a large Poisson population, if

λvA >
(a
b

)2
(1− λ) vB

19Majority rule is a nested case where a = b = 1 and t = 1/2.
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then A wins with probability one. If the reverse inequality holds strictly, then B wins

with probability one.

Proof. Suppose that λvA >
(
a
b

)2
(1− λ) vB. We first claim that for all large m,

qA
qB
> a

b
; that is, the vote shares favor A.

Suppose to the contrary that there is a sequence of equilibria along which qA
qB
≤ a

b

and so by Proposition 7, along this sequence P[PivA]P[PivB ] ≥
b
a
. If voting costs are uniform,

the equilibrium conditions imply

qA
qB
=

λvA
(1− λ) vB

P [PivA]
P [PivB]

But since the left-hand side is less than or equal to a/b while the right-hand side is

strictly greater than a/b, this is a contradiction.

The remainder of the proof, showing that when qA
qB
> a

b
holds for all large m, it is

the case that Pr [A wins]→ 1, is the same as in Theorem 1 and is omitted.

Theorem 2 shows that (strict) supermajority rules bias the election in favor of the

default alternative, as intuition would suggest. Thus, one might conjecture that the

outcome of a large supermajority election maximizes a weighted utilitarian welfare

function proportional to the required vote share ratio, a/b. Theorem 2, however, says

that supermajority rules exaggerate the welfare weight given to the default, in effect

giving a weight (a/b)2 to B relative to A. In the 2/3 supermajority rule, even though

A must obtain twice as many votes as B, outcomes correspond to a welfare function

that places four times the weight on B compared to A. The “squaring property”arises

from a combination of the asymmetry in the rule and the additional pivotal events this

asymmetry creates. Since each of these effects has a factor a/b, their combination

squares this term in implied the welfare weight. While Theorem 2 only delineates

outcomes in large elections, the following example suggests that the asymptotic results

are well-approximated even when the size of the electorate is relatively small.

Example 4 Consider the 2/3 majority rule. Suppose that the expected size of the

population m = 1000 and that voting costs are uniform. Figure 3 depicts the equilib-

rium ratio of the expected number of votes for A versus B, qA/qB, as a function of
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Figure 3: Ratios of Votes and Pivot Probabilities: 2/3 Rule

the welfare ratio, λvA/ (1− λ) vB. Even with a small number of voters, it is (approx-
imately) the case that A obtains the required 2 : 1 vote ratio if and only if the welfare

ratio is at least 4 : 1.

7 Conclusion

Majority rule is, perhaps, the most commonmeans of group decision making. Whether

it be mundane problems, like where a group should go to lunch, or deeply consequen-

tial decisions like whom to elect as president, the same rule is used. Its ubiquitousness

stems from its simplicity and perceived fairness. However majority rule is perceived

to suffer from a key defect. As a counting rule, it only reflects the direction and not

the intensity of preferences.

When voting is voluntary, we show that preference intensity is encoded via endoge-

nous participation rates, and these, in turn, influence election outcomes. Specifically,

we showed that, under majority rule, the utilitarian choice always enjoys the higher

vote share in large elections. This is true regardless of the distribution of values,

costs, and numbers of eligible voters.
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In standard models of voting, which assume that the number of eligible voters is

either fixed or Poisson distributed, the expected vote share alone determines election

outcomes and hence welfare in large elections. The reason is that these models as-

sume there is no limiting dispersion in the number of voters and hence vote totals

are arbitrarily close to their expected values. we showed that this assumption was

consequential– with limiting dispersion, the link between expected vote share and

welfare becomes more tenuous and may be broken entirely.

The key condition guaranteeing that this link is not severed is that the objec-

tive and subjective distributions of the number of voters must converge suffi ciently

quickly. The objective distribution reflects the view of an outside observer whereas

the subjective view reflects that of an eligible voter, and these views differ since a

given voter is more likely to eligible in a large electorate than a small one. While not

all distributions satisfy the convergence condition, many commonly used distributions

with limiting dispersion do, including the negative binomial and hypergeometric dis-

tributions. Thus, it is not limiting dispersion that is, per se, the problem but rather

the impact of this dispersion on the views of insiders and outsiders to an election.

We also showed that when the convergence condition holds, majority rule is the

only rule having the utilitarian property. All other supermajority rules distort par-

ticipation so as to grossly overweight the issue or candidate favored by the rule.

The complexity of pivotal calculations and the microscopic nature of pivot proba-

bilities in large elections are causes for worry in this regard. But since the performance

of majority rule hinges on relative participation rates, the conclusions are robust to

misperceptions of these probabilities so long as the magnitude of the errors is consis-

tent across voters. For instance, if all voters overestimated pivotal probabilities by

a factor of 10,000, for instance, our conclusions would be unaltered. There is also

growing evidence that the rational voter paradigm is, in fact, descriptive of behav-

ior. For instance, Levine and Palfrey (2007) conduct “elections,”consisting of 3 to

51 individuals, with costly and voluntary voting in a controlled laboratory setting.

Their main findings support the rational model– the underdog principle is strongly

observed in the data and turnout adjusts to changes in the fraction of A supporters
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and the size of the electorate in the direction predicted by theory.

A Turnout

The purpose of this appendix is to provide a proof of Proposition 4. This is done via

Lemmas A.8 and A.9 below.

When studying the asymptotic behavior of the pivotal probabilities, it is useful to

rewrite these in a more convenient form.

A.1 Roots of Unity Formulae

For n > 1, let ω = exp (2πi/n). Since ωn = e2πi = 1, ω is an nth (complex) root of

unity. Note that
∑n−1

r=0 ω
r = (1− ωn) / (1− ω) = 0.

Lemma A.1 For x, y, z positive,

n∑
k=0

(
n

k, k

)
xkykzn−2k = −xn − yn + 1

n

n−1∑
r=0

(
ωrx+ ω−ry + z

)n
Proof. Using the trinomial formula, for r < n,20

(
ωrx+ ω−ry + z

)n
=

n∑
k=0

n∑
l=0

(
n

k, l

)
ωrkxkω−rlylzn−k−l

and so, averaging over r = 0, 1, ..., n− 1,

1

n

n−1∑
r=0

(
ωrx+ ω−ry + z

)n
=

1

n

n−1∑
r=0

n∑
k=0

n∑
l=0

(
n

k, l

)
ωr(k−l)xkylzn−k−l

=
1

n

n∑
k=0

n∑
l=0

(
n

k, l

)(n−1∑
r=0

ωr(k−l)

)
xkylzn−k−l

=
1

n
xn

(
n−1∑
r=0

ωrn

)
+
1

n
yn

(
n−1∑
r=0

ω−rn

)

+
1

n

n−1∑
k=0

n−1∑
l=0

(
n

k, l

)(n−1∑
r=0

ωr(k−l)

)
xkylzn−k−l

20Recall the convention that if m < k + l, then
(
m
k,l

)
= 0.
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Now observe that since ωn = 1,

n−1∑
r=0

ωr(k−l) =


n if k = n or l = n

n if k = l

1−ωn(k−l)
1−ω(k−l) = 0 otherwise

Thus,

1

n

n−1∑
r=0

(
ωrx+ ω−ry + z

)n
= xn + yn +

n∑
k=0

(
n

k, k

)
xkykzn−2k

Lemma A.2 For x, y, z positive,

n∑
k=0

(
n

k, k + 1

)
xkyk+1zn−2k−1 = −nxn−1z + 1

n

n−1∑
r=0

ωr
(
ωrx+ ω−ry + z

)n
Proof. The proof is almost the same as that of Lemma A.1 and is omitted.

The following lemma studies asymptotic properties of the pivotal probabilities

when the propensities to vote and abstain remain fixed as m increases.

Lemma A.3 For x, y, z positive, satisfying x+ y + z = 1,

lim
n

1

n

n−1∑
r=0

(
ωrx+ ω−ry + z

)n
= 0

Proof. First, note that since |ωr| = 1 = |ω−r| ,∣∣ωrx+ ω−ry + z
∣∣ ≤ |ωr|x+ ∣∣ω−r∣∣ y + z = 1

Fix a K. Then for all n ≥ K

1

n

n−1∑
r=0

(
ωrx+ ω−ry + z

)n ≤ 1

n

n−1∑
r=0

∣∣ωrx+ ω−ry + z
∣∣n

≤ 1

n

n−1∑
r=0

∣∣ωrx+ ω−ry + z
∣∣K
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and thus

lim
n→∞

1

n

n−1∑
r=0

(
ωrx+ ω−ry + z

)n ≤ lim
n→∞

1

n

n−1∑
r=0

∣∣ωrx+ ω−ry + z
∣∣K

= lim
n→∞

1

n

n−1∑
r=0

∣∣x exp (2πi r
n

)
+ y exp

(
−2πi r

n

)
+ z
∣∣K

=

∫ 1

0

|x exp (2πit) + y exp (−2πit) + z|K dt (9)

using the definition of the Riemann integral. Since

|x exp (2πit) + exp (−2πit) y + z| ≤ x |exp (2πit)|+ y |exp (−2πit)|+ z = 1

with a strict inequality unless t = 0 or t = 1. To see this, first note that the inequality

above is strict for t = 1
2
. For all t 6= 0, 1

2
, 1 observe that

|x exp (2πit) + y exp (−2πit)| =
√
x2 + y2 + 2xy cos (4πt) < x+ y

Thus, for all t 6= 0 or 1, |x exp (2πit) + y exp (−2πit) + z| < 1.
Since the inequality in (9) holds for all K and the integral on the right-hand side

is decreasing in K and goes to zero as K →∞, the left-hand side must be zero.

Lemma A.4 For x, y, z positive, satisfying x+ y + z = 1,

lim
n

1

n

n−1∑
r=0

ωr
(
ωrx+ ω−ry + z

)n
= 0

Proof. Since |ωr| = 1,

1

n

n−1∑
r=0

∣∣ωr (ωrx+ ω−ry + z
)n∣∣ = 1

n

n−1∑
r=0

∣∣(ωrx+ ω−ry + z
)n∣∣

and the result now follows by applying the previous lemma.

Lemma A.5 For all q < 1
2
, the function

φ (q) ≡ 1
2

n∑
k=0

(
n

k, k

)
q2k (1− 2q)n−2k + 1

2

n∑
k=0

(
n

k, k + 1

)
q2k+1 (1− 2q)n−2k−1

is decreasing in q.
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Proof. Using the formulae in Lemmas A.1 and A.2 (set x = y = q and z = 1− 2q),
routine calculations show that

φ (q) = −1
2
qn− 1

2
nqn−1 (1− 2q)+ 1

2n

n−1∑
r=0

(
cos
(
2π
r

n

)
+ 1
)(
2q cos

(
2π
r

n

)
+ 1− 2q

)n
and so

φ′ (q) = −1
2
n (n− 1) qn−2 (1− 2q)+

n−1∑
r=0

(
cos2

(
2π
r

n

)
− 1
)(
2q cos

(
2π
r

n

)
+ 1− 2q

)n−1
Now if n is odd, φ′ (q) is clearly negative. When n is even, the first term on the

right-hand side of the expression is clearly negative, so it remains to consider the term

containing the sum. Notice that the terms corresponding to r = 0 and r = n/2 are

zero; thus, the sum can be rewritten as:

2

n
2
−1∑
r=1

(
cos2

(
2π
r

n

)
− 1
)(
2q cos

(
2π
r

n

)
+ 1− 2q

)n−1
using the fact that for all r < n

2
, cos

(
2π r

n

)
= cos

(
2π n−r

n

)
. It may be easily verified

that for all q < 1
2
, for r < n

4
, the sum of the rth term and the

(
n
2
− r
)
th term is

negative. If n is not a multiple of 4, this accounts for all of the terms; however, if n

is a multiple of 4, the remaining term, r = n/4, is clearly negative. Thus the sum is

negative and so is φ′ (q) .

A.2 Asymptotic Participation Rates

We begin with a lemma that shows that both aggregate participation rates cannot

remain positive in the limit.

Lemma A.6 Along any sequence of equilibria, lim pA = 0 or lim pB = 0 (or both).

Proof. Suppose to the contrary that neither is zero. Then there exists a subsequence

such that lim pA (m) = p∗A > 0 and lim pB (m) = p∗B > 0. Define q∗A = λp∗A and

q∗B = (1− λ) p∗B. Choose δ > 0 such that the closed ball Bδ of radius δ around

(q∗A, q
∗
B) lies in R2++ and every element (qA, qB) ∈ Bδ satisfies qA + qB < 1. Let m1 be

such that for all m > m1, (qA (m) , qB (m)) = (λpA (m) , (1− λ) pB (m)) ∈ Bδ.
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Now Lemma 1 (ii) in Taylor and Yildirim (2010) shows that

Pr [PivA | n, qA, qB] ≤ Pr [PivA | n, qA, qA]

Lemma A.5 shows that the right-hand side is decreasing in qA, and so if q = minBδ {qA} ,
we have that for all m > m1,

Pr [PivA | n, qA (m) , qB (m)] ≤ Pr
[
PivA | n, q, q

]
Lemmas A.3 and A.4 imply that limn→∞ Pr

[
PivA | n, q, q

]
= 0. Thus, for all ε,

there exists an n0 such that for all n > n0 and for all m > m1,

Pr [PivA | n, qA (m) , qB (m)] < ε

As a result,

Pr [PivA | qA (m) , qB (m)] =
∑
n≤n0

πm (n) Pr [PivA | n, qA (m) , qB (m)]

+
∑
n>n0

πm (n) Pr [Piv
m
A | n, qA (m) , qB (m)]

<
∑
n≤n0

πm (n) + ε
∑
n>n0

πm (n)

But since limm→∞
∑

n≤n0 πm (n) = 0, there exists an m2 such that for all m >

m2,
∑

n≤n0 πm (n) < ε. Thus, we have shown that for all ε, there exists an m0 =

max {m1,m2} , such that for all m > m0,

Pr [PivA | qA (m) , qB (m)] < 2ε

A similar argument shows that limPr [PivB] = 0 as well. But the equilibrium

conditions (5) and (6) now imply that along the subsequence, lim qA (m) = 0 and

lim qB (m) = 0, contradicting the initial supposition.

Next we show that in the limit, the participation rates are of the same magnitude.

Lemma A.7 Along any sequence of equilibria, 0 < lim inf pA
pB
≤ lim sup pA

pB
<∞.
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Proof. Suppose that for some subsequence, lim qA
qB
= 0. This implies that for all

m large enough, along the subsequence, qA = λpA < (1− λ) pB = qB and so from

Lemma 1, Pr [PivA] > Pr [PivB] . The equilibrium conditions: for all v,

cA (v) = v Pr [PivA] and cB (v) = v Pr [PivB]

imply that when m is large enough, for all v, cA (v) > cB (v) , and hence, for all v,

pA (v) > pB (v) as well.

The fact that lim pA
pB
= 0 implies that lim pA = 0 and since pA =

∫ 1
0
pA (v) dGA (v) ,

for almost all values of v, lim pA (v) = 0. Since pA (v) is continuous in v, we have that

for all v, lim pA (v) = 0. Now because pA (v) > pB (v) , it is the case that lim pB (v) = 0

as well. This in turn implies that lim cA (v) = 0 = lim cB (v) .

Thus, along the subsequence, when m is large enough,

pA =

∫ 1

0

F (cA (v)) dGA (v) ≈
∫ 1

0

F ′ (0) v Pr [PivA] dGA (v) = F ′ (0) Pr [PivA] vA

Similarly, pB ≈ F ′ (0) Pr [PivB] vB. Thus, for all large m,

pA (m)

pB (m)
≈ Pr [PivA]
Pr [PivB]

vA
vB

>
vA
vB

since Pr [PivA] > Pr [PivB] . Since the right-hand side of the inequality above is

independent of m, this contradicts the assumption that lim pA
pB
= 0.

Lemma A.8 In any sequence of equilibria, the participation rates pA (m) and pB (m)

tend to zero, and at the same rate.

Proof. Lemmas A.6 and A.7 together complete the proof of Lemma A.8.

Lemma A.9 In any sequence of equilibria, the expected number of voters mpA (m)

and mpB (m) tend to infinity.

Proof. 21Suppose to the contrary that there is a sequence of equilibria in which, say,

limmpA <∞. Lemma A.7 then implies that limmpB <∞ as well.

21We thank Ramazan Bora for suggesting this proof.
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First, recall that for all qA, qB

Pr [T | qA, qB] =
∞∑
n=0

πm (n) Pr [T | n, qA, qB]

Also, Roos (1999) has shown that for all n, qA, qB

|Pr [T | n, qA, qB]− P [T | n, qA, qB]| ≤ qA + qB

where P [PivA | n, qA, qB] is the probability of PivA calculated according to a Poisson
multinomial distribution with an expected population size of n (see Appendix D).

Combining these, we can write∣∣∣∣∣
∞∑
n=0

πm (n) Pr [T | n, qA, qB]−
∞∑
n=0

πm (n)P [T | n, qA, qB]
∣∣∣∣∣ ≤ qA + qB (10)

Second, we claim that limm→∞ inf
∑∞

n=0 πm (n)P [T | n, qA (m) , qB (m)] > 0. To

see this, notice first that for all n,

P [T | n, qA, qB] > P [(0, 0) | n, qA, qB] = e−n(qA+qB)

Define Eπ [N ] = m′ and note that since m′ ≥ m − 1, as m → ∞, m′ → ∞ as well.

Next,
∞∑
n=0

πm (n)P [T | n, qA, qB] ≥
∑
n≤2m′

πm (n)P [T | n, qA, qB]

≥
∑
n≤2m′

πm (n) e
−n(qA+qB)

≥
∑
n≤2m′

πm (n) e
−2m(qA+qB)

And since Eπ [N ] = m′, it is the case that22
∑

n≤2m′ πm (n) >
1
2
and so for all m,

∞∑
n=0

πm (n)P [T | n, qA, qB] ≥
1

2
e−2m

′(qA+qB)

But since limm′ (qA + qB) = limm
′ (λpA + (1− λ) pB) ≡ Q∗ <∞ (say),

lim
m→∞

inf
∞∑
n=0

πm (n)P [T | n, qA, qB] ≥
1

2
e2Q

∗

and since qA and qB both go to zero, limPr [PivA] > 0 as well. The equilibrium

conditions now imply that lim pA > 0, contradicting Lemma A.8.
22Every distribution function F with non-negative support and mean µ > 0 satisfies F (2µ) > 1

2 .
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B Welfare

Lemma B.1 Suppose λvA > (1− λ) vB. Then limm→∞ sup
qB
qA
< 1.

Proof. We have already shown that if λvA > (1− λ) vB, then when n is large qA > qB.

Suppose, to the contrary, that there is a subsequence (qA (m) , qB (m)) such that

lim
m→∞

qB
qA
= 1

The equilibrium conditions imply that

qB
qA
× Pr [PivA]
Pr [PivB]

≈ (1− λ) vB
λvA

(11)

Since lim qB
qA
= 1, for all ε > 0, there exists an n0 such that for all n > n0,

qB
qA
> 1− ε. Now observe that for all n > n0, it is also the case that

Pr [PivA]

Pr [PivB]
=

Pr [T ] + Pr [T−1]

Pr [T ] + Pr [T+1]

=
Pr [T ] + qB

qA
Pr [T+1]

Pr [T ] + Pr [T+1]

>
Pr [T ] + (1− ε) Pr [T+1]

Pr [T ] + Pr [T+1]

> 1− ε

and hence for all n > n0,

qB
qA
× Pr [PivA]
Pr [PivB]

> (1− ε)2

But this is impossible since the limit of left-hand side of (11) is greater than 1 while

the right-hand side is strictly less than 1. This completes the proof.

Proof of Proposition 6. Suppose that λvA > (1− λ) vB so that A is the utilitarian
choice (the case when B is the utilitarian choice is analogous). Proposition 5 implies

that in any sequence of equilibria, for all large m, qA > qB. We now show that

as m increases without bound, from any single voter’s perspective, the subjective

probability that A is elected approaches 1, or equivalently, the probability that B
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is elected approaches 0. We argue by contradiction. So suppose that there is a

subsequence (qA (m) , qB (m)) such that along this subsequence

lim
m→∞

∞∑
n=1

π∗∗m (n) Pr [B wins | n] > 0.

Let T−k be the event that A loses by k votes. Then, the probability that B wins

when the realized electorate is of size n,

Pr [B wins | n] = 1
2
Pr [T | n] +

n∑
k=1

Pr [T−k | n] <
n∑
k=0

Pr [T−k | n]

In order to estimate the subjective probability that B wins, we use a result of Roos

(1999) that the probability Pr [S | n] of any event S ⊂ Z2+ in the multinomial model
with population n is well-approximated by the corresponding probability P [S | n] in
the Poisson model with a mean population of n (see Appendix D). In particular,

given the voting propensities qA and qB,

|Pr [B wins | n]− P [B wins | n]| ≤ qA + qB

and observe that the bound on the right-hand side does not depend on n. Thus,∣∣∣∣∣
∞∑
n=1

π∗∗m (n) Pr [B wins | n]−
∞∑
n=1

π∗∗m (n)P [B wins | n]
∣∣∣∣∣ ≤ qA + qB (12)

We have assumed that the limit of the first term is positive, and since qA + qB → 0,

the limit of the second term is positive as well.

To compute the second term, observe that the probability that A loses by k votes

using the Poisson distribution with mean population n is

P [T−k | n] = e−n(qA+qB)
∞∑
j=0

(nqA)
j

j!

(nqB)
j+k

(j + k)!

= e−n(qA+qB)Ik (2n
√
qAqB)

(√
qB
qA

)k
< e−n(qA+qB)I0 (2n

√
qAqB)

(√
qB
qA

)k
where Ik is the kth order modified Bessel function of the first kind.23 The last in-

equality follows from the fact that when z > 0, then for all k > 0, Ik (z) < I0 (z) ,

23This is defined as Ik (z) =
∑∞
j=0

(z/2)j

j!
(z/2)j+k

(j+k)! (see Abramowitz and Stegum, 1965).
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(see, for instance, Nåsell, 1974). Thus, for all k > 0,

P [T−k | n] < P [T | n]
(√

qB
qA

)k
and so the Poisson probability that B wins when the mean population is n

P [B wins | n] <
∞∑
k=0

P [T−k | n]

<
∞∑
k=0

P [T | n]
(√

qB
qA

)k
= P [T | n]

(
1−

√
qB
qA

)−1
(13)

Thus, writing γm =
(
1−

√
qB
qA

)−1
, we have that for all large m,

∞∑
n=1

π∗∗m (n)P [B wins | n] < γm

∞∑
n=1

π∗∗m (n)P [T | n]

= γm

∞∑
n=0

πm (n)P [T | n+ 1]

< γm

∞∑
n=0

πm (n)P [T | n]

where the last inequality follows from the fact that for all n, P [T | n+ 1] < P [T | n]
(since for x > y, the function e−xnI0 (yn) is decreasing in n).

Now Lemma B.1 implies that γ = limm γm <∞, and so

lim
m→∞

∞∑
n=1

π∗∗m (n)P [B wins | n] ≤ γ lim
m→∞

sup
∞∑
n=0

πm (n)P [T | n]

and since the left-hand side is positive, so is the right-hand side.

Finally, the inequality (again see Appendix D),∣∣∣∣∣
∞∑
n=0

πm (n) Pr [T | n]−
∞∑
n=0

πm (n)P [T | n]
∣∣∣∣∣ ≤ qA + qB

implies that

lim

∞∑
n=0

πm (n) Pr [T | n] > 0

and since Pr [PivA] = 1
2
Pr [T ] + 1

2
Pr [T−1] , it is also the case that limPr [PivA] > 0.

But this is impossible since if limPr [PivA] were positive, the limiting turnout pA

would be positive as well, contradicting Proposition 4. This completes the proof.
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Proof of Theorem 1. Suppose λvA > (1− λ) vB (the other case is analogous).
Exactly as in the proof of Proposition 6 (simply use π∗ instead of π∗∗), it suffi ces to

prove that

lim
m→∞

∞∑
n=0

π∗m (n)P [T | n] = 0

Now since for all n ≥ 1, π∗∗m (n) = π∗m (n)
n
m
, the concordance condition implies

that there exists a constant K > 0 such that for all m and 1 ≤ n ≤ m,

π∗m (n) ≤ π∗∗m (n) +
K

m

Now note that

∞∑
n=0

π∗m (n)P [T | n] ≤ π∗m (0) +
m∑
n=1

π∗m (n)P [T | n] +
∞∑

n=m+1

π∗∗m (n)P [T | n]

≤ π∗m (0) +
K

m

m∑
n=1

P [T | n] +
m∑
n=1

π∗∗m (n)P [T | n] +
∞∑

n=m+1

π∗∗m (n)P [T | n]

= π∗m (0) +
K

m

m∑
n=1

P [T | n] +
∞∑
n=1

π∗∗m (n)P [T | n]

since for all n > m, π∗∗m (n) > π∗m (n) . Proposition 6 implies that the second sum in

the expression above goes to zero. Now observe that

m∑
n=1

P [T | n] =
m∑
n=1

e−n(qA+qB)I0 (2n
√
qAqB)

≤
m∑
n=1

e−2n
√
qAqBI0 (2n

√
qAqB)

≤
m∑
n=1

∫ n

n−1
e−2x

√
qAqBI0 (2x

√
qAqB) dx

=

∫ m

0

e−2x
√
qAqBI0 (2x

√
qAqB) dx

where we have used the fact that e−2x
√
qAqBI0

(
2x
√
qAqB

)
is decreasing in x. To

evaluate the integral in the last step, write r = 2
√
qAqB and notice that∫ m

0

e−rxI0 (rx) dx =
1

r

∫ mr

0

e−yI0 (y) dy
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by changing the variable of integration from x to y = rx. Since24∫
e−yI0 (y) dy = e−yy (I0 (y) + I1 (y))

we obtain

1

r

∫ mr

0

e−yI0 (y) dy =
1

r
e−mrmr (I0 (mr) + I1 (mr))

≤ 2e−mrmI0 (mr)

Thus,
1

m

m∑
n=0

P [T | n] ≤ 1

m
+ 2e−2m

√
qAqBI0 (2m

√
qAqB)

Since mqA → ∞ and mqB → ∞ (Lemma A.9), 2m
√
qAqB → ∞ as well and the

fact that limx→∞ e
−xI0 (x) = 0 implies that

lim
m→∞

1

m

m∑
n=0

P [T | n] = 0

This completes the proof.

C Supermajority Rules

This appendix provides a proof of Theorem 2. Throughout, we assume that the

population is Poisson distributed with mean m.

Pivot Probabilities As before, an event (j, k) is pivotal for A if a single additional

vote for A will affect the outcome of the election and denote the set of such events

by PivA. The events in PivA can be classified into three separate categories:

A1. There is a tie and so a single vote for A will result in A winning. A tie can

occur only if the number of voters is a multiple of a+ b. The set of ties is thus

T = {(la, lb) : l ≥ 0} (14)

24This may be verified using I ′0 (x) = I ′1 (x) and (xI1 (x))
′
= xI0 (x) .
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A2. Candidate A is one vote short of a tie. The set of such events is25

T − (1, 0) = {(la− 1, lb) : l ≥ 1}

A3. A is losing but a single additional vote will result in A winning. For any integer

k such that 1 ≤ k < b, events in sets of the form

T − (
⌈a
b
k
⌉
, k) =

{
(la−

⌈a
b
k
⌉
, lb− k) : l ≥ 1

}
have the required property.26 This is because for any k < b the condition that

la−
⌈
a
b
k
⌉

lb− k <
a

b
<
la−

⌈
a
b
k
⌉
+ 1

lb− k
is equivalent to ⌈a

b
k
⌉
>
a

b
k >

⌈a
b
k
⌉
− 1

Similarly, events that are pivotal for B can also be classified into three categories:

B1. There is a tie and so a single vote for B will result in B winning. This occurs

for vote totals in the set T as defined above in (14).

B2. Candidate B is one vote short of a tie. The set of such events is

T − (0, 1) = {(la, lb− 1) : l ≥ 1}

B3. B is losing but a single additional vote will result in B winning. For any integer

j such that 1 ≤ j < a, events in sets of the form

T − (j,
⌈
b
a
j
⌉
) =

{
(la− j, lb−

⌈
b
a
j
⌉
) : l ≥ 1

}
have the required property. This is because for any j < a, the condition that

la− j
lb−

⌈
b
a
j
⌉ > a

b
>

la− j
lb−

⌈
b
a
j
⌉
+ 1

is equivalent to ⌈
b

a
j

⌉
− 1 < b

a
j <

⌈
b

a
j

⌉
25Of course, the number of votes cast is nonnegative, so the point (−1, 0) is excluded from this

set.
26dze denotes the smallest integer greater than z.
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(Under majority rule there are no events of the kind listed in A3. and B3.)

As usual, let qA be the probability of a vote for A and qB the probability of a vote

for B. Under the a
a+b
-supermajority rule, the Poisson probability of a tie is

P [T ] =
∞∑
k=0

e−mqA
(mqA)

ka

(ka)!
e−mqB

(mqB)
kb

(kb)!
(15)

Approximations Now suppose that we have a sequence (qA (m) , qB (m)) such that

both mqA (m) → ∞ and mqB (m) → ∞. Myerson (2000) has shown that, for large
m, the Poisson probability of a tie, given in (15), can be approximated as follows:

P [T ] ≈
exp

(
(a+ b)

(
mqA
a

) a
a+b
(
mqB
b

) b
a+b −mqA −mqB

)
(
2π (a+ b)

(
mqA
a

) a
a+b
(
mqB
b

) b
a+b

) 1
2

(ab)
1
2

(16)

Second, Myerson (2000) has also shown that the probability of “offset”events of

the form T − (j, k) can be approximated as follows:

P [T − (j, k)] ≈ P [T ]× xbj−ak (17)

where x =
(
qB
qA

a
b

) 1
a+b

.

The pivotal probabilities can then be approximated by using (16) and (17):

P [PivA] ≈ P [T ]×
(
1− t+ txb +

b−1∑
k=1

xbd
a
b
ke−ak

)

P [PivB] ≈ P [T ]×
(
t+ (1− t)x−a +

a−1∑
j=1

xbj−ad
b
a
je
)

where t is the probability that a tie is resolved in favor of A.

Since it is the case that
{
b
⌈
a
b
k
⌉
− ak : k = 1, 2, ..., b− 1

}
= {1, 2, ..., b− 1} and

similarly,
{
a
⌈
b
a
j
⌉
− bj : j = 1, 2, ..., a− 1

}
= {1, 2, ..., a− 1} , we have

P [PivA] ≈ P [T ]×
(
1− t+ txb +

b−1∑
k=1

xk

)
(18)

P [PivB] ≈ P [T ]×
(
t+ (1− t)x−a +

a−1∑
j=1

x−j

)
(19)
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Proof of Proposition 7. Using the formulae in (18) and (19), the ratio

P [PivA]
P [PivB]

≈ 1− t+ txb +
∑b−1

k=1 x
k

t+ (1− t)x−a +
∑a−1

j=1 x
−j

The numerator is increasing in x, while the denominator is decreasing. Thus, the

ratio of the pivotal probabilities is increasing in x. When x = 1,

P [PivA]
P [PivB]

≈ b

a

If, for all m large, qA(m)
qB(m)

> a
b
, then x < 1 and so for all m large, P[PivA]P[PivB ] <

b
a
. If there

is a subsequence along which qA
qB
= a

b
and along this subsequence lim P[PivA]

P[PivB ] >
b
a
,

then this contradicts the fact that x = 1 implies P[PivA]P[PivB ] ≈
b
a
. Thus, if for all m large,

qA(m)
qB(m)

≥ a
b
, then lim sup P[PivA]P[PivB ] ≤

b
a
.

The other case is analogous.

D Poisson Approximations of the Multinomial

We are interested in the distribution of the sum of independent Bernoulli vector

variables (XA, XB) where Pr [(XA, XB) = (1, 0)] = qA; Pr [(XA, XB) = (0, 1)] = qB

and Pr [(XA, XB) = (0, 0)] = q0 = 1 − qA − qB. The probability that after n draws,
the sum of the variables (XA, XB) is (k, l) is

Pr [(k, l) | n] =
(
n

k, l

)
(qA)

k (qB)
l (q0)

n−k−l

Now consider a bivariate Poisson distribution with means nqA and nqB. The

Poisson probability P [(k, l)] that the number of occurrences of A and B will be k

and l, respectively, is

P [(k, l) | n] = e−nqA−nqB
(nqA)

k

k!

(nqB)
l

l!

Roos (1999, p. 122) has shown that

sup
S⊂Z2+

|Pr [S | n]− P [S | n]| ≤ qA + qB

Note that the bound on the right-hand side does not depend on n.
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